Read Anywhere and on Any Device!

Subscribe to Read | $0.00

Join today and start reading your favorite books for Free!

Read Anywhere and on Any Device!

  • Download on iOS
  • Download on Android
  • Download on iOS

Measure Theory and Probability (The Wadsworth & Brooks/Cole Mathematics Series)

4.4/5 (1290744 ratings)
Measure theory and integration are presented to undergraduates from the perspective of probability theory. The first chapter shows why measure theory is needed for the formulation of problems in probability, and explains why one would have been forced to invent Lebesgue theory (had it not already existed) to contend with the paradoxes of large numbers. The measure-theoretic approach then leads to interesting applications and a range of topics that include the construction of the Lebesgue measure on R [superscript n] (metric space approach), the Borel-Cantelli lemmas, straight measure theory (the Lebesgue integral). Chapter 3 expands on abstract Fourier analysis, Fourier series and the Fourier integral, which have some beautiful probabilistic applications: Polya's theorem on random walks, Kac's proof of the Szego theorem and the central limit theorem. In this concise text, quite a few applications to probability are packed into the exercises.
--back cover
Pages
Array
Format
PDF, EPUB & Kindle Edition
Publisher
Array Publishing
Release
Array
ISBN
0817638849

Measure Theory and Probability (The Wadsworth & Brooks/Cole Mathematics Series)

4.4/5 (1290744 ratings)
Measure theory and integration are presented to undergraduates from the perspective of probability theory. The first chapter shows why measure theory is needed for the formulation of problems in probability, and explains why one would have been forced to invent Lebesgue theory (had it not already existed) to contend with the paradoxes of large numbers. The measure-theoretic approach then leads to interesting applications and a range of topics that include the construction of the Lebesgue measure on R [superscript n] (metric space approach), the Borel-Cantelli lemmas, straight measure theory (the Lebesgue integral). Chapter 3 expands on abstract Fourier analysis, Fourier series and the Fourier integral, which have some beautiful probabilistic applications: Polya's theorem on random walks, Kac's proof of the Szego theorem and the central limit theorem. In this concise text, quite a few applications to probability are packed into the exercises.
--back cover
Pages
Array
Format
PDF, EPUB & Kindle Edition
Publisher
Array Publishing
Release
Array
ISBN
0817638849

More Books